

- Convert 7090.441_{10} to hexadecimal. Carry out your answer to three places past the decimal point.

$$7090.441 = 1BB2$$

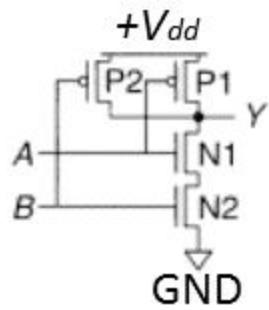
$$(7090)_{10} = (1BB2)_{16}$$

Explanation

Step 1:

Continually divide decimal number by 16 to give a result and a remainder. Write down the remainder (in hexadecimal).

Division	Result	remainder (in dec)	remainder (in hex)
$7090 / 16$	443	2	2
$443 / 16$	27	11	B
$27 / 16$	1	11	B
$1 / 16$	0	1	1


- Design a minimum two-level NOR-NOR circuit to realize $f(W, X, Y, Z) = \sum m(10, 12, 14)$. Enter the Boolean equation that describes the circuit and attach a Word, PDF, or image file of your circuit in Part 2 of the final exam. Then convert the circuit to two-level NAND-AND circuit. Do not use gate symbols with bubbles in your final answer. Enter the Boolean equation that describes the circuit and attach a Word, PDF, or image file of your circuit in Part 2 of the final exam. Also attach any Karnaugh maps used to derive the equations for the circuit.

- Find a minimum two-level, NAND gate circuit to simultaneously realize $f_1 = \sum m(3, 4, 6, 8, 11, 12, 15)$ and $f_2 = \sum m(3, 4, 6, 8, 11, 13, 14)$. *Hint:* the minimum solution has nine gates. Enter the equations for f_1 and f_2 and attach files of any Karnaugh maps or other work used to derive the equations. In Part 2 of the final exam, attach a Word, PDF, or image file of your circuit.

$$f_1 =$$

$$f_2 =$$

- Complete the truth table for the CMOS logic circuit shown where P_1 and P_2 are *p*-channel MOSFETS and N_1 and N_2 are *n*-channel MOSFETS. Use 0 or 1 for Y and use ON or OFF for P_1 , P_2 , N_1 , and N_2 . Assume a voltage of V_{dd} applied to Y produces an output of 1. State what type of device this is (i.e., Inverter, NAND Gate, or NOR Gate).

<i>A</i>	<i>B</i>	<i>P₁</i>	<i>P₂</i>	<i>N₁</i>	<i>N₂</i>	<i>Y</i>
0	0					
0	1					
1	0					
1	1					

5. Write the logic equation for the output described by the truth table below for an 8-to-1 MUX with control inputs *A*, *B*, and *C*.

<i>A</i>	<i>B</i>	<i>C</i>	<i>Y</i>
0	0	0	1
0	0	1	1

0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

6. What is the difference between a D latch and a D flip-flop?

- (a) There is no difference between a latch and a flip-flop. They both accomplish the same purpose with different circuits.
- (b) A latch allows input to flow through D to the output Q at the clock edge and a flip-flop allows input D to flow through to the output Q when the clock is high.
- (c) A latch allows input to flow through D to the output Q when the clock is high and a flip-flop allows input D to flow through to the output Q at the clock edge.
- (d) A latch “latches” the output to the intended value and a flip-flop “flip-flops” the output to the opposite value

7. What is a D-CE flip-flop?

- (a) A D flip-flop with a clear function.
- (b) A D flip-flop with two additional inputs.

(c) A D flip-flop that uses a clock enable rather than gating the clock.

(d) A D flip-flop with control inputs.

8. Design a 3-bit counter that counts in the sequence: $ABC = 010, 011, 111, 001, 100, 110, 000, 010, \dots$

Use D flip-flops. Enter your final equations for D_A , D_B , and D_C in the spaces provided and attach any transition tables and next-state maps used to derive them in Part 2 of the final exam.

$D_A =$

$D_B =$

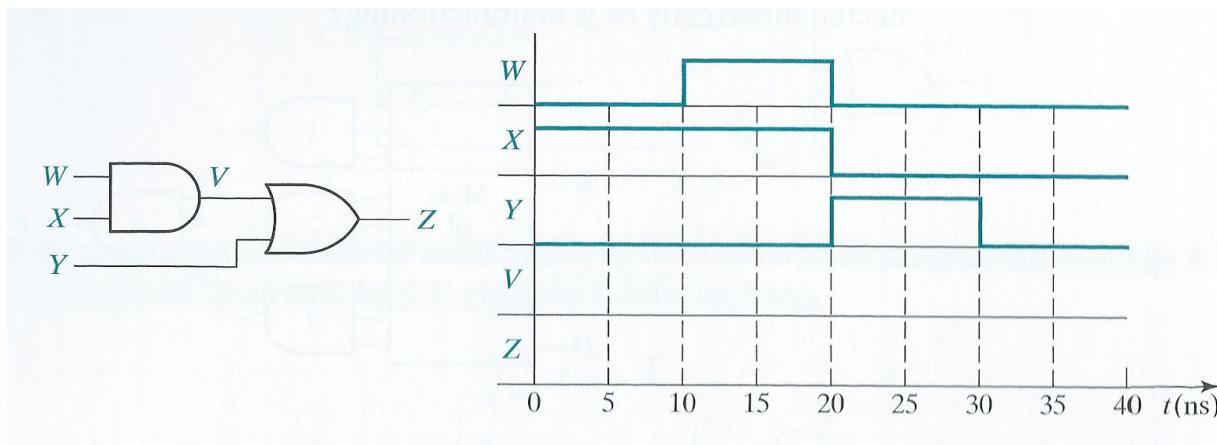
$D_C =$

9. An M-N flip-flop behaves as follows:

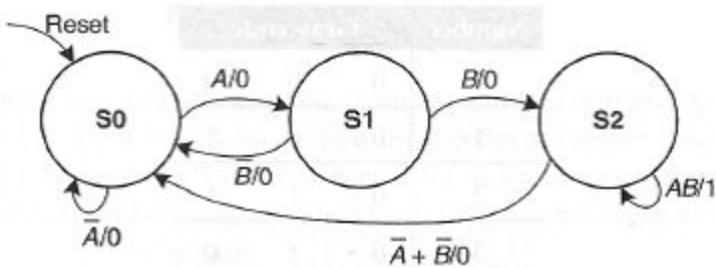
If $MN = 00$, the next state of the flip-flop is 0.

If $MN = 10$, the next state of the flip-flop is the same as the present state.

If $MN = 01$, the next state of the flip-flop is the complement of the present state.


If $MN = 11$, the next state of the flip-flop is 1.

Complete the following table for M and N using don't-cares when possible.


Present State		Next State		
Q	Q_+	M	N	MN
0	0			
0	1			

1	0			
1	1			

10. Complete the timing diagram for the given circuit. The AND gate has a propagation delay of 5 ns, the OR gate has a propagation delay of 12.5 ns, and V and Z are initially zero. In Part 2 of the final exam, attach a Word, PDF, or image file of your completed diagram.

11. Write a short sentence describing the operation of the state machine shown in the figure below.

